[Python] GroupBy 분할, 적용, 결합 (aggregate, apply, filter, transform)
2022. 4. 5. 09:53ㆍ파이썬
# GroupBy 분할, 적용, 결합 (aggregate, apply, filter, transform)
import pandas as pd
df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],
'data': range(6)}, columns=['key', 'data'])
df
key | data | |
---|---|---|
0 | A | 0 |
1 | B | 1 |
2 | C | 2 |
3 | A | 3 |
4 | B | 4 |
5 | C | 5 |
GroupBy
키 값으로 합치기
df.groupby('key').sum()
[28]:
data1 | data2 | |
---|---|---|
key | ||
A | 3 | 8 |
B | 5 | 7 |
C | 7 | 12 |
열 인덱싱 지원
import seaborn as sns
planets = sns.load_dataset('planets')
planets.head()
method | number | orbital_period | mass | distance | year | |
---|---|---|---|---|---|---|
0 | Radial Velocity | 1 | 269.300 | 7.10 | 77.40 | 2006 |
1 | Radial Velocity | 1 | 874.774 | 2.21 | 56.95 | 2008 |
2 | Radial Velocity | 1 | 763.000 | 2.60 | 19.84 | 2011 |
3 | Radial Velocity | 1 | 326.030 | 19.40 | 110.62 | 2007 |
4 | Radial Velocity | 1 | 516.220 | 10.50 | 119.47 | 2009 |
planets.groupby('method')['orbital_period'].median()
method
Astrometry 631.180000
Eclipse Timing Variations 4343.500000
Imaging 27500.000000
Microlensing 3300.000000
Orbital Brightness Modulation 0.342887
Pulsar Timing 66.541900
Pulsation Timing Variations 1170.000000
Radial Velocity 360.200000
Transit 5.714932
Transit Timing Variations 57.011000
Name: orbital_period, dtype: float64
aggregate()
rng = np.random.RandomState(0)
df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],
'data1': range(6),
'data2': rng.randint(0, 10, 6)},
columns = ['key', 'data1', 'data2'])
df
[16]:
key | data1 | data2 | |
---|---|---|---|
0 | A | 0 | 5 |
1 | B | 1 | 0 |
2 | C | 2 | 3 |
3 | A | 3 | 3 |
4 | B | 4 | 7 |
5 | C | 5 | 9 |
- aggregate는 문자열, 함수, 리스트 등을 취해 한 번에 모든 집계를 계산할 수 있다.
- min = 'min'
df.groupby('key').aggregate(['min', np.median, max])
[17]:
data1 | data2 | |||||
---|---|---|---|---|---|---|
min | median | max | min | median | max | |
key | ||||||
A | 0 | 1.5 | 3 | 3 | 4.0 | 5 |
B | 1 | 2.5 | 4 | 0 | 3.5 | 7 |
C | 2 | 3.5 | 5 | 3 | 6.0 | 9 |
filter
- 표준편차가 어떤 한계 값보다 큰 그룹을 유지하게 하기
import numpy as np
import pandas as pd
class display(object):
"""Display HTML representation of multiple objects"""
template = """<div style="float: left; padding: 10px;">
<p style='font-family:"Courier New", Courier, monospace'>{0}</p>{1}
</div>"""
def __init__(self, *args):
self.args = args
def _repr_html_(self):
return '\n'.join(self.template.format(a, eval(a)._repr_html_())
for a in self.args)
def __repr__(self):
return '\n\n'.join(a + '\n' + repr(eval(a))
for a in self.args)
[22]:
def filter_func(x):
return x['data2'].std() > 4
display('df', "df.groupby('key').std()", "df.groupby('key').filter(filter_func)")
df
key | data1 | data2 | |
---|---|---|---|
0 | A | 0 | 5 |
1 | B | 1 | 0 |
2 | C | 2 | 3 |
3 | A | 3 | 3 |
4 | B | 4 | 7 |
5 | C | 5 | 9 |
df.groupby('key').std()
data1 | data2 | |
---|---|---|
key | ||
A | 2.12132 | 1.414214 |
B | 2.12132 | 4.949747 |
C | 2.12132 | 4.242641 |
df.groupby('key').filter(filter_func)
key | data1 | data2 | |
---|---|---|---|
1 | B | 1 | 0 |
2 | C | 2 | 3 |
4 | B | 4 | 7 |
5 | C | 5 | 9 |
transform 변환
- 데이터에서 그룹별 평균값을 빼서 분산 셋팅하기
- agrregate는 groupby데이터를 반환하지만 transform은 재결합을 위해 전체 데이터의 변환된 버전을 반환한다.
df.groupby('key').transform(lambda x: x - x.mean())
[23]:
data1 | data2 | |
---|---|---|
0 | -1.5 | 1.0 |
1 | -1.5 | -3.5 |
2 | -1.5 | -3.0 |
3 | 1.5 | -1.0 |
4 | 1.5 | 3.5 |
5 | 1.5 | 3.0 |
apply()
- 임의의 함수를 그룹 결과에 적용할 때 사용
- DataFrame을 Pandas객체로 변환
def norm_by_data2(x):
# x is a DataFrame of group values
x['data1'] /= x['data2'].sum()
return x
display('df', "df.groupby('key').apply(norm_by_data2)")
[24]:
df
key | data1 | data2 | |
---|---|---|---|
0 | A | 0 | 5 |
1 | B | 1 | 0 |
2 | C | 2 | 3 |
3 | A | 3 | 3 |
4 | B | 4 | 7 |
5 | C | 5 | 9 |
df.groupby('key').apply(norm_by_data2)
key | data1 | data2 | |
---|---|---|---|
0 | A | 0.000000 | 5 |
1 | B | 0.142857 | 0 |
2 | C | 0.166667 | 3 |
3 | A | 0.375000 | 3 |
4 | B | 0.571429 | 7 |
5 | C | 0.416667 | 9 |
'파이썬' 카테고리의 다른 글
[python] loc, iloc 차이 (0) | 2022.04.07 |
---|---|
[Python] Dataframe Column Change (0) | 2022.04.07 |
[Python] json to dataframe (0) | 2022.04.04 |
[Python] JSON to dataframe (0) | 2022.04.04 |
[Python] Colab(코랩)과 로컬 Pycharm 연동하기 (6) | 2021.12.08 |